Циклический избыточный код (CRC): обнаружение (и даже исправление) ошибок в цифровых данных
Мир сейчас полностью зависит от хранения и передачи цифровых данных. Самолеты, фондовые рынки, системы безопасности, скороварки – современная жизнь быстро обрушится в хаос, если мы не сможем обеспечить точность в постоянно текущем и необъятно огромном потоке из единиц и нулей.
Есть две основные задачи, связанные с поддержанием целостности наших цифровых данных. Первое – это избегать в первую очередь ошибок; эта цель включает в себя множество инженерных практик, которые способствуют надежной передаче и приему цифровых данных. Но, несмотря на все наши усилия, ошибки возможны, и это приводит нас ко второй задаче: обнаружение ошибок. Если система может обнаруживать ошибки, она также может компенсировать эти ошибки, просто отбросив сомнительные данные или запросив повторную передачу.
Выбор метода обнаружения ошибок
Если вы знакомы с битом четности, который иногда используется в связи через UART, вы что-то знаете об обнаружении ошибок. Но бит четности является довольно жалким механизмом обнаружения ошибок; на самом деле, насколько я могу судить, большинство методов обнаружения ошибок более или менее жалки по сравнению с циклическим избыточным кодом (CRC, cyclic redundancy check), который явно стал доминирующим подходом – некоторые крупные имена в цифровой связи (включая CAN, USB и Ethernet) используют CRC как часть своего протокола передачи данных.
Структура пакета данных USB
Эффективный, но не простой
Эта короткая статья не является местом для изучения подробностей вычислений и производительности CRC. Суть в том, что двоичный «многочлен» применяется к потоку данных таким образом, чтобы генерировать контрольную сумму, которая, скорее всего, изменится, если один или несколько битов сообщении были изменены.
Этот «многочлен» представляет собой просто математически удобный способ обращения к определенной последовательности битов. Например:
Это широко используемый полином «CCITT». Это полином 16-го порядка, что означает, что соответствующее двоичное число имеет ширину 16 бит, и что итоговая контрольная сумма CRC будет иметь ширину 16 бит. (Обратите внимание, что коэффициент для члена высшего порядка считается равным 1 и опускается в двоичной версии.) Члены, которые не отображаются в математическом выражении, имеют в качестве коэффициента двоичный 0.
Обнаружение ошибок проще и эффективнее с аппаратным CRC модулем; это схема из технического описания EFM8LB1 показывает работу CRC периферии в микроконтроллере EFM8 Laser Bee
Два CRC, не один
Создание CRC только для исходного сообщения вам не поможет. Ключом к реализации обнаружения ошибок CRC является обеспечение того, чтобы и передатчик, и приемник генерировали контрольную сумму одним и тем же способом.
Передатчик генерирует контрольную сумму для передаваемых данных и включает ее в исходное сообщение, а приемник генерирует собственную контрольную сумму с использованием полученных данных. Если сообщение приемника не совпадает с сообщением передатчика, весьма вероятно, что контрольные суммы будут отличаться; таким образом, приемник считает данные ошибочными, если контрольные суммы CRC не совпадают.
Куда двигаться дальше
Вы должны знать, что обработка CRC может использоваться фактически для исправления ошибок, а не просто для их обнаружения. Здесь мы имеем дело с двоичными данными, поэтому, если CRC позволяет нам идентифицировать ошибочный бит, мы можем восстановить исходную информацию, просто переключив этот бит.
В следующих статьях мы рассмотрим подробности исправления ошибок на базе CRC.
учебно-методическое пособие по информатике и икт (10, 11 класс) по теме
На сегодняшний день в мире передается огромное количество информации, хотя системы передачи данных отвечают всем требованиям. Они не являются столь совершенными.
Скачать:
Предварительный просмотр:
Федеральное государственное бюджетное образовательное учреждение
«Омский государственный педагогический университет»
Факультет математики, информатики, физики и технологии
Кафедра прикладной информатики и математики
Направление: педагогическое образование
Профиль: Информатика и Технология
Дисциплина: Теоретические основы информатики
«__» _______________ 20___г.
Введение
На сегодняшний день в мире передается огромное количество информации, хотя системы передачи данных отвечают всем требованиям. Они не являются столь совершенными. При передаче данных могут возникать помехи. Помехоустойчивость – способность системы осуществлять прием информации в условиях наличия помех в линии связи и искажений во внутри аппаратных трактах. Помехоустойчивость обеспечивает надежность и достоверность передаваемой информации (данных).Управление правильностью передачи информации выполняется с помощью помехоустойчивого кодирования. Есть коды, обнаруживающие ошибки, и корректирующие коды, которые еще и исправляют ошибки. Помехозащищенность достигается с помощью введения избыточности, дополнительных битов. В симплексных каналах связи устраняют ошибки с помощью корректирующих кодов. В дуплексных–достаточно применения кодов, обнаруживающих ошибки. [1]
История развития помехоустойчивого кодирования началась еще с 1946г., а именно, после публикации монографии американского ученого К. Шеннона «Работы по теории информации и кибернетике».В этой работе он не показал как построить эти коды, а доказал их существование. Важно отметить, что результаты работы К. Шеннона опирались на работы советских ученых, таких как: А. Я. Хинчин, Р. Р. Варшамов и др. На сегодняшний день проблема передачи данных является особо актуальной, т.к. сбой при передаче может вызвать не только искажение сообщения в целом, но и полную потерю информации. Для этого и существуют помехоустойчивые коды, способные предотвратить потерю и искажение информации. В настоящее время существует ряд разновидностей помехоустойчивых кодов, обеспечивающих высокую достоверность при малой величине избыточности и простоте технической реализации кодирующих и декодирующих устройств. Принципиально коды могут быть использованы как для обнаружения, так и для исправления ошибок. Однако удобства построения кодирующих и декодирующих устройств определили преимущественное применение лишь некоторых из них, в частности корректирующего кода Хемминга.
Цель данной курсовой работы: Ознакомление с помехоустойчивым кодированием и изучение кода Хемминга.
1) Ознакомиться с видами помехоустойчивого кодирования;
2) Ознакомиться с кодом Хемминга, как с одним из видов помехоустойчивого кодирования;
3) Изучить алгоритм построения кода Хемминга.
Объект исследования : помехоустойчивое кодирование.
Предмет исследования : код Хемминга.
Данная курсовая работа состоит из титульного листа, оглавления, введения, двух глав (теоретической и практической), заключения и списка литературы.
Глава 1. Теоретические основы изучения помехоустойчивого кодирования
1.1. Виды помехоустойчивого кодирования
В мире существует немало различных помех и искажений, это могут быть как звуковые искажения, так и на графике. Мы рассмотрим, что понимается под помехой в кодировании информации. Под помехой понимается любое воздействие, накладывающееся на полезный сигнал изатрудняющее его прием. Ниже приведена классификация помех и их источников.
Рис. 1.Помехи и их источники
Внешние источники помех вызывают в основном импульсные помехи, а внутренние – флуктуационные. Помехи, накладываясь на видеосигнал, приводят к двум типам искажений: краевыеи дробления. Краевые искажения связаны со смещением переднего или заднего фронта импульса. Дробление связано с дроблением единого видеосигнала на некоторое количество более коротких сигналов [2].
Приведем классификацию помехоустойчивых кодов.
1) Обнаруживающие ошибки:
2) Корректирующие коды:
А) С пороговым декодированием;
Б) По макс. правдоподобия;
В) С последовательным декодированием.
Теперь рассмотрим более подробно каждый вид кодирования.
Проверка четности – очень простой метод для обнаружения ошибок в передаваемом пакете данных. С помощью данного кода мы не можем восстановить данные, но можем обнаружить только лишь одиночную ошибку.
В каждом пакет данных есть один бит четности, или, так называемый, паритетный бит. Этот бит устанавливается во время записи (или отправки) данных, и затем рассчитывается и сравнивается во время чтения (получения) данных. Он равен сумме по модулю 2 всех бит данных в пакете. То есть число единиц в пакете всегда будет четно. Изменение этого бита (например с 0 на 1) сообщает о возникшей ошибке.
Начальные данные: 1111
Данные после кодирования: 11110 (1 + 1 + 1 + 1 = 0 (mod 2))
Принятые данные: 10110 (изменился второй бит)
Как мы видим, количество единиц в принятом пакете нечетно, следовательно, при передаче произошла ошибка [3].
Корреляционные коды (код с удвоением ).
Элементы данного кода заменяются двумя символами, единица «1» преобразуется в 10, а ноль «0» в 01.
Вместо комбинации 1010011 передается 10011001011010. Ошибка обнаруживается в том случае, если в парных элементах будут одинаковые символы 00 или 11 (вместо 01 и 10) [2].
Код с постоянным весом.
Одним из простейших блочных неразделимых кодов является код с постоянным весом. Примером такого кода может служить семибитный телеграфный код МТК–3, в котором каждая разрешенная кодовая комбинация содержит три единицы и четыре нуля (рис.2). Весом кодовой комбинации называют число содержащихся в ней единиц. В рассматриваемом коде вес кодовых комбинаций равен трем.
Число разрешенных кодовых комбинаций в кодах с постоянным весом определяется как количество сочетаний из n символов по g и равно
Рис.2. Примеры разрешенных и запрещенных комбинаций кода МТК-3
К исходной комбинации добавляется такая же комбинация по длине. В линию посылается удвоенное число символов. Если в исходной комбинации четное число единиц, то добавляемая комбинация повторяет исходную комбинацию, если нечетное, то добавляемая комбинация является инверсной по отношению к исходной.
Прием инверсного кода осуществляется в два этапа. На первом этапе суммируются единицы в первой основной группе символов. Если число единиц четное, то контрольные символы принимаются без изменения, если нечетное, то контрольные символы инвертируются. На втором этапе контрольные символы суммируются с информационными символами по модулю два. Нулевая сумма говорит об отсутствии ошибок. При ненулевой сумме, принятая комбинация бракуется. Покажем суммирование для принятых комбинаций без ошибок (1,3) и с ошибками (2,4).
По сравнению с простым кодом, код Грея позволяет уменьшить ошибки неоднозначности считывания, а также ошибки из-за помех в канале. Обычно этот код применяется для аналогово-цифрового преобразования непрерывных сообщений.
Недостатком кода Грея является его невесомость, т. е. вес единицы не определяется номером разряда. Информацию в таком виде трудно обрабатывать на ЭВМ. Декодирование кода также связано с большими затратами. Поэтому перед вводом в ЭВМ (или перед декодированием) код Грея преобразуется в простой двоичный код, который удобен для ЭВМ и легко декодируется.
Для перевода простого двоичного кода в код Грея нужно:
Таким образом, мы рассмотрели виды помехоустойчивого кодирования и увидели, что их существует не так уж и мало. Каждый код по своему уникален и полезен для кодирования информации. Теперь мы ознакомимся с кодом Хемминга подробнее.
1.2.Характеристика кода Хэмминга при помехоустойчивом кодировании
В середине 40-х годов Ричард Хемминг работал в знаменитых Лабораториях Белла на счётной машине Bell Model V. Это была электромеханическая машина, использующая релейные блоки, скорость которых была очень низка: один оборот за несколько секунд. Данные вводились в машине с помощью перфокарт, и поэтому в процессе чтения часто происходили ошибки. В рабочие дни использовались специальные коды, чтобы обнаруживать и исправлять найденные ошибки, при этом оператор узнавал об ошибке по свечению лампочек, исправлял и запускал машину. В выходные дни, когда не было операторов, при возникновении ошибки машина автоматически выходила из программы и запускала другую.
Р. Хемминг часто работал в выходные дни, и все больше и больше раздражался, потому что часто был должен перегружать свою программу из-за ненадежности перфокарт. На протяжении нескольких лет он проводил много времени над построением эффективных алгоритмов исправления ошибок. В 1950 году он опубликовал способ, который на сегодняшний день мы знаем как код Хемминга.[6.].
К ним обычно относятся коды с минимальным кодовым расстоянием исправляющие все одиночные ошибки, и коды с расстоянием исправляющие все одиночные и обнаруживающие все двойные ошибки. Длина кода Хэмминга:
(r – количество проверочных разрядов).
Рис.3. Проверочная матрица
Перестановкой столбцов, содержащих одну единицу, данную матрицу можно привести к виду(рис.4)
Рис. 4.Измененная матрица
Использование такого кода позволяет исправить любую одиночную ошибку или обнаружить произвольную ошибку кратности два. Если информационные и проверочные разряды кода нумеровать слева направо, то в соответствии с матрицей получаем систему проверочных уравнений, с помощью которых вычисляем проверочные разряды(рис.5):
Рис.5. Система проверочных уравнений
Двоичный код Хэмминга с кодовым расстоянием получается путем добавления к коду Хэмминга с одного проверочного разряда, представляющего собой результат суммирования по модулю два всех разрядов кодового слоя. Длина кода при этом разрядов, из которых являются проверочными.
Операция кодирования может выполняться в два этапа. На первом этапе определяется кодовая комбинация с использованием матрицы H, соответствующей коду с на втором — добавляется один проверочный разряд, в котором записывается результат суммирования по модулю два всех разрядов кодового слова, полученного на первом этапе. Операция декодирования также состоит из двух этапов. На первом вычисляется синдром, соответствующий коду на втором — проверяется последнее проверочное соотношение.[8]
Таким образом, ознакомившись с характеристикой кода Хемминга, важно сказать, что состоит код из двух частей и предполагает надежную работу нахождения ошибок и корректировки сообщений.
1.3.Алгоритмы использования кода Хэмминга для нахождения ошибок
Код Хэмминга представляет собой блочный код, который позволяет выявить и исправить ошибочно переданный бит в пределах переданного блока. Код Хэмминга состоит из двух частей. Первая часть кодирует исходное сообщение, вставляя в него в определённых местах контрольные биты (вычисленные особым образом). Вторая часть получает входящее сообщение и заново вычисляет контрольные биты (по тому же алгоритму, что и первая часть). Если все вновь вычисленные контрольные биты совпадают с полученными, то сообщение получено без ошибок. В противном случае, выводится сообщение об ошибке и при возможности ошибка исправляется.
Рассмотрим алгоритм построения кода для исправления одиночной ошибки.
Количество разрядов m – определяет количество проверок.
В третью проверку – коэффициенты которые содержат 1 в третьем разряде и т. д.
https://radioprog. ru/post/531
https://nsportal. ru/shkola/informatika-i-ikt/library/2016/10/03/kursovaya-rabota-kod-hemminga